А. В. Фокин, А. Ф. Коломиец
Диоксин — проблема научная или социальная?

Вместо предисловия

 
НГ от 17 ноября 1998 года
17 XI 1998
С. Березин

Тайная и непредвиденная опасность

В ВОДАХ Байкала, в рыбе, зоо- и фитопланктоне, а также в яйцах птиц, населяющих берега и острова „священного моря“, обнаружены диоксины и диоксиноподобные соединения. Их ещё называют „гормонами деградации“ или „гормонами преждевременного старения“.

Диоксины относятся к разряду особо опасных стойких органических загрязнителей, так как обладают высокой устойчивостью к фотолитическому, химическому и биологическому разложению. В результате они долгое время могут сохраняться в окружающей среде. При этом для диоксинов не существует „порога действия“, то есть даже одна молекула способна инициировать ненормальную клеточную деятельность и вызвать цепь реакций, нарушающих функции организма.

Известно, к примеру, что во время военных действий во Вьетнаме вооружённые силы США активно применяли, в числе других видов химического оружия, гербицид „Оранж эйджент“, который содержит диоксин. Этот препарат вызывал искусственный листопад в джунглях, лишавший вьетнамских партизан их естественного и главного убежища.

Действие диоксинов на человека обусловлено их влиянием на рецепторы клеток, ответственных за работу гормональных систем. При этом возникают эндокринные и гормональные расстройства, изменяется содержание половых гормонов, гормонов щитовидной и поджелудочной желёз, что увеличивает риск развития сахарного диабета, нарушаются процессы полового созревания и развития плода. Дети отстают в развитии, их обучение затрудняется, у молодых людей появляются заболевания, свойственные старческому возрасту. В целом повышается вероятность бесплодия, самопроизвольного прерывания беременности, врождённых пороков и прочих аномалий. Изменяется также иммунный ответ, а значит, увеличивается восприимчивость организма к инфекциям, возрастает частота аллергических реакций, онкологических заболеваний.

Главными источниками появления диоксинов в окружающей среде являются окисление и сжигание органических веществ, химическая, металлургическая, а также целлюлозно-бумажная промышленность. Заметим, что в непосредственной близости от „священного моря“ действует Селенгинский целлюлозно-картонный комбинат, а прямо на южном побережье — Байкальский целлюлозно-бумажный.

К сожалению, в Бурятии, большинство населения которой активно потребляет дары озера, планомерные исследования с целью определения степени реальной опасности влияния байкальских диоксинов на здоровье людей ранее не проводились. Но в нынешнем году учёные отдела химии полимеров Бурятского научного центра РАН при поддержке республиканского Госкомитета по экологии приступили к изучению этой, как ни прискорбно, актуальной для Байкальского региона проблемы.

Улан-Удэ

VIVOS VOCO!
А. Шкроб

Чёрным по белому…

Диоксины действительно губительны, но эту опасность уже давно нельзя считать ни тайной, ни непредвиденной. Вы можете в этом убедиться, прочитав статью, приведённую ниже, которая опубликована много лет назад, но практически не устарела. О механизме действия диоксинов можно также кое-что узнать из статьи "Drug and drove", также представленной в нашем выпуске.

Здесь хочется сказать о другом… Печальный опыт учит не доверять алармистским призывам наших СМИ. Что и кто стоит за заметкой в „Независимой газете“? Желание бурятских химиков получить деньги и аппаратуру для своих собственных исследований? Хитроумный расчёт финансовых и прочих проходимцев, метящих в байкальские комбинаты? Хорошо оплачиваемая тяга журналиста на жареное? Или и в самом деле загажен самый крупный на планете пресный резервуар?

Такое недоверие вполне оправдано. Вспомним, как лет десять назад газеты и журналы заполонили нападки на отечественную противодифтерийную сыворотку, якобы опасную для детей из-за находящейся в ней ртути. Ртуть (а точнее, бактерицидное ртутьорганическое соединение — мертиолат) действительно там была, но в таком количестве, что опасность была бы призрачной, если даже вливать сыворотку стаканами. Демопресса умело использовала этот жупел для дискредитации советского здравоохранения, а результатом стала неслыханная для конца XX века эпидемия дифтерита.

Что особенно настораживает… Заметка не содержит типично журналистских ляпов и явно написана человеком, знакомым с проблемой. Есть, однако, одна странность — не указан непосредственный источник сведений о диоксиновом загрязнении (из заключительной фразы прямо не следует, что им является Бурятский научный центр). Кто же производил эти анализы? Насколько можно доверять их результатам?

Запомните главное — диоксины никто не делает нарочно, они — расплата за несовершенство технологии или за несоблюдение совершенной технологии. Будь то технология производства гербицидов, обработки целлюлозы или уничтожения отходов. Я знаю точно — всплески диоксинов в московском воздухе при гайдаровщине сопровождали каждый скачок цен на бензин: городские службы экономили на вывозе мусора с помоек, и дворники его жгли на кострах. А в городском мусоре полно хлорвиниловой упаковки… Единственный разумный способ избежать заражения страны диоксинами — делать всё по правилам.


 

История человечества знает множество случаев появления в биосфере больших количеств потенциально опасных веществ. Воздействие этих чужеродных соединений (ксенобиотиков) на живые организмы иногда было причиной трагических последствий, примером которых может служить история с инсектицидом ДДТ. Ещё большую печальную известность приобрёл диоксин, появившийся в окружающей среде ряда стран Запада в 50-60-е годы, а также в Южном Вьетнаме во время химической войны, которую вели США в период с 1961 по 1972 г.

Диоксином в органической химии называют шестичленный гетероцикл, в котором два атома кислорода связаны двумя двойными углерод-углеродными связями.

В токсикологии под термином „диоксин“ понимают производное этого соединения, а именно 2,3,7,8-тетрахлордибензо-пара-диоксин, который является представителем обширной группы чрезвычайно опасных ксенобиотиков из числа полихлорированных полициклических соединений.

Рисунок 1
Особо опасные вещества из числа полихлорированных ароматических соединений с конденсированными циклами. Попадая в организм, они активируют (индуцируют) синтез железосодержащих ферментов — цитохромов P-450, что обычно приводит к нарушению обмена веществ и поражению отдельных органов и тканей. Обладая высокой симметрией, такие соединения способны длительное время существовать в организме.

Токсичность диоксина и некоторых ядов
ВеществоЖивотноеМинимальная
летальная доза,
микромоль/кг
Ботулинический токсинмышь3,3×10–17
Дифтерийный токсинмышь4,2×10–12
Диоксинморская свинка3,1×10–9
Кураремышь7,2×10–7
Стрихнинмышь1,5×10–6
Диизопропилфторфосфатмышь1,6×10–5
Цианид натриямышь3,1×10–4

Диоксин — один из самых коварных ядов, известных человечеству. В отличие от обычных ядов, токсичность которых связана с подавлением ими определённых функций организма, диоксин и подобные ему ксенобиотики поражают организм благодаря способности сильно повышать (индуцировать) активность ряда окислительных железосодержащих ферментов (монооксигеназ), что приводит к нарушению обмена многих жизненно важных веществ и подавлению функций ряда систем организма.

Диоксин опасен по двум причинам. Во-первых, являясь наиболее сильным синтетическим ядом, он отличается высокой стабильностью, долго сохраняется в окружающей среде, эффективно переносится по цепям питания и таким образом длительное время воздействует на живые организмы. Во-вторых, даже в относительно безвредных для организма количествах диоксин сильно повышает активность узкоспецифичных монооксигеназ печени, которые превращают многие вещества синтетического и природного происхождения в опасные для организма яды. Поэтому уже небольшие количества диоксина создают опасность поражения живых организмов имеющимися в природе обычно безвредными ксенобиотиками.

Даже из приведённого беглого описания очевидно, как важна и сложна проблема защиты от этого опасного ксенобиотика. Поэтому в США, где в окружающую среду внесено значительное количество диоксина, на изучение этой проблемы только федеральным правительством выделяется ежегодно 5 млн. долл.

С 1971 г. проблема диоксина и родственных ему соединений регулярно обсуждается в США на специальных конференциях, которые в последнее время проводятся ежегодно как международные форумы учёных заинтересованных стран [1].

1. Внимание к этой проблеме нашло отражение и в обильной научной литературе о диоксине, частично обобщённой в сборниках: Dioxin: toxicological and chemical aspects. N.Y.- Ln, 1978, v.1; Dioxins. Sources, exposure, transport and control. Ohio, 1980, v.1,2.

За последние 10-12 лет широко рассмотрены научные аспекты этой проблемы. Всё, что удалось узнать о диоксине, свидетельствует о чрезвычайной опасности этого вещества для человека, особенно в условиях хронического отравления, и позволяет сформулировать основные задачи, вставшие перед человечеством в связи с появлением этого ксенобиотика в природе. Вместе с тем проблеме диоксина присущи ещё и социальные, политические и военные аспекты. Именно поэтому в некоторых странах Запада, и особенно в США, сознательно пытаются затушевать отдельные стороны проблемы, не предавая огласке сведения, раскрывающие опасность этого яда для человечества, используя результаты некорректных опытов для выработки суждений о диоксине и т.д. [2].

2. Официальная точка зрения США о диоксине нашла отражение в следующих работах: Bovey R. W., Young A. L. The science of 2,4,5-T and associated phenoxyherbicides. N.Y., 1980; Chemical and Engineering News, 1983, v. 61, p 23; Proc. 2-nd Cont. Educ. Conf. on Herbicide Orange, Washington, 1980.

История диоксина и её уроки

История диоксина тесно связана с проблемами выгодной ассимиляции полихлорированных бензолов, являющихся отходами ряда крупнотоннажных химических производств. В начале 30-х годов фирмой „Дау Кемикал“ (США) был разработан способ получения полихлорфенолов из полихлорбензолов щелочным гидролизом при высокой температуре под давлением и показано, что эти препараты, получившие название дауцидов, являются эффективными средствами для консервации древесины.

Уже в 1936 г. появились сообщения о массовых заболеваниях среди рабочих шт. Миссисипи, занятых консервацией древесины с помощью этих агентов. Большинство из них страдали тяжёлым кожным заболеванием — хлоракне, наблюдавшимся ранее среди рабочих хлорных производств. В 1937 г. были описаны случаи аналогичных заболеваний среди рабочих завода в Мидланде (шт. Мичиган, США), занятых в производстве дауцидов. Расследование причин поражения в этих и многих подобных случаях привело к заключению, что хлоракногенный фактор присутствует только в технических дауцидах, а чистые полихлорфенолы подобным действием не обладают [3].

3. Результаты изучения токсичности дауцидов приведены в работе: Adams Е. М. еt аl. — Ind. Med., 1941, v.10, p.1.

Расширение масштабов поражения полихлорфенолами в дальнейшем было обусловлено их использованием в военных целях. Во время второй мировой войны в США были получены первые гербицидные препараты гормоноподобного действия на основе 2,4-дихлор- и 2,4,5-трихлорфеноксиуксусных кислот (2,4-Д и 2,4,5-Т). Эти препараты разрабатывались для поражения растительности Японии и были приняты на вооружение армией США вскоре после войны. Одновременно эти кислоты, их соли и эфиры стали использоваться для химической прополки сорняков в посевах злаковых культур, а смеси эфиров 2,4-Д и 2,4,5-Т — для уничтожения нежелательной древесной и кустарниковой растительности. Это позволило военно-промышленным кругам США создать крупнотоннажные производства 2,4-дихлор-, 2,4,5-трихлорфенолов, а на их основе кислот 2,4-Д и 2,4,5-Т.

К счастью, производство и применение 2,4-Д не имели отрицательных последствий для человечества. Напротив, изучение свойств 2,4-Д и её производных явилось мощным импульсом к становлению современной химии гербицидов. Совсем по-иному развивались события, связанные с расширением масштабов производства и применения 2,4,5-Т.

Уже в 1949 г. на заводе в Нитро (шт. Зап. Вирджиния, США), производящем 2,4,5-трихлорфенол, произошел взрыв: 250 человек получили серьёзные поражения [4]. Правда, об этом факте стало известно лишь в конце 70-х годов, а что касается последствий взрыва для местного населения и окружающей среды, то они всё ещё покрыты тайной.

4. Об истории инцидентов с диоксином см.: Hay A. — Ann. N.Y. Acad. Sci., 1979, v. 320, p. 321.

В 50-е годы появились сообщения о частых поражениях техническими 2,4,5-Т и трихлорфенолом на химических заводах в ФРГ и во Франции, причём последствия взрывов в Людвигсхафене (1953 г., завод фирмы БАСФ) и Гренобле (1956 г., завод фирмы „Рон Пуленк“) обсуждались широко и детально. Многочисленные случаи поражения рабочих трихлорфенолом в 50-е годы имели место и в США (на заводах фирм „Дау Кемикал“, „Монсанто“, „Хукер“, „Диаманд“ и др.). Однако эти инциденты до конца 70-х годов не были преданы гласности.

Период с 1961 по 1970 г., когда заводы по производству 2,4,5-Т работали с предельной нагрузкой в связи с массовыми военными закупками армией США, был особенно насыщен событиями, связанными с диоксином. Массовые поражения, обусловленные взрывами на заводах, имели место в США, Италии, Великобритании, Голландии и Франции. Все эти инциденты (за исключением тех, что произошли во Франции) не освещались в печати до конца 70-х годов. Особенно страшными были последствия взрыва на заводе фирмы „Филипс Дюффар“ в Амстердаме (1963 г.), после которого администрация завода была вынуждена демонтировать оборудование, производственные помещения и затопить их в океане.

Последнее десятилетие также не обошлось без многочисленных происшествий на заводах по производству и переработке 2,4,5-трихлорфенола. Наиболее страшной была катастрофа в г. Севезо (1976 г., Италия), — в результате которой пострадали не только рабочие, но и местное население. Для ликвидации последствий этого инцидента с большой территории пришлось удалять поверхностный слой почвы.

Схема образования диоксина при щелочном гидролизе тетрахлорбензола
Схема образования диоксина при щелочном гидролизе тетрахлорбензола. Эту реакцию обычно проводят в растворе метанола (СН3ОН) под давлением при температуре выше 165°С. Образующийся при этом трихлорфенолят натрия всегда частично превращается в предиоксин, а затем в диоксин. С повышением температуры до 210°С скорость этой побочной реакции резко возрастает, а в более жёстких условиях основным продуктом реакции становится диоксин. В этом случае процесс неконтролируем и в производственных условиях завершается взрывом.

Причины поражения рабочих, занятых в производстве и переработке 2,4,5-трихлорфенола, были установлены в 1957 г. почти одновременно тремя группами учёных [5]. Г. Гофман (ФРГ) выделил в чистом виде хлоракногенный фактор технического трихлорфенола, изучил его свойства, физиологическую активность и приписал ему строение тетрахлордибензофурана. Синтезированный образец этого соединения действительно оказывал на животных такое же действие, как и технический трихлорфенол.

5. Holfman Н. Т.- Arch. Exp. Pathol., 1957, В. 232, S. 228; Schulz К. Н.Arch. Кlin. Exp. Derm., 1957, В. 206, S. 589; Gilman N., Deetrich J.J.- J. Amer. Chem. Soc., 1957, v.79, p.1439; Ibid., 1958, v.80, p.366; J. Org. Chem., 1957, v.22, p.1403; Вauer Н.J., Sсhulz K. H., Spiegelberg V.- Arch. Gewerbepath. Gewerbehyd., 1961, В.13, S.538.

В это же время К. Шульц (ФРГ), специалист в области кожных заболеваний, обратил внимание на то, что симптоматика поражения его клиента, работающего с хлорированными дибензо-пара-диоксинами, идентична симптоматике поражения техническим трихлорфенолом. Проведенные им исследования показали, что хлоракногенным фактором технического трихлорфенола действительно является 2,3,7,8-тетрахлордибензо-пара-диоксин (диоксин) — неизбежный побочный продукт щелочной переработки симметричного тетрахлорбензола. Позже сведения К. Шульца получили подтверждение в работах других учёных.

Высокая токсичность диоксина была установлена в 1957 г. и в США. Это произошло после несчастного случая с американским химиком Дж. Дитрихом, который, занимаясь синтезом диоксина и его аналогов, получил сильное поражение, напоминающее поражение техническим трихлорфенолом, и был госпитализирован на длительный срок. Этот факт, как и многие другие инциденты на производствах трихлорфенола в США, был скрыт от общественности, а синтезированные американским химиком галогенированные дибензо-п-диоксины изъяты для изучения военным ведомством.

Таким образом, в конце 50-х годов была выявлена причина частых поражений техническим трихлорфенолом и установлен факт токсичности диоксина и тетрахлордибензофурана. Более того, в 1961 г. К. Шульц опубликовал подробные сведения о чрезвычайно высокой токсичности диоксина для животных и показал особую опасность хронического поражения этим ядом. Так, через 25 лет после появления в природе диоксин перестал быть неизвестным „хлоракногенным фактором“.

К этому времени, несмотря на высокую токсичность, 2,4,5-трихлорфенол проник во многие сферы производства. Его натриевая и цинковая соли, а также продукт переработки — гексахлорофен стали широко применяться в качестве биоцидных препаратов в технике, сельском хозяйстве, текстильной и бумажной промышленности, в медицине и т.д. На основе этого фенола приготавливались инсектициды, препараты для нужд ветеринарии, технические жидкости различного назначения. Однако наиболее широкое применение 2,4,5-трихлорфенол нашел в производстве 2,4,5-Т и других гербицидов, предназначенных не только для мирных, но и для военных целей. В результате к 1960 г. производство трихлорфенола достигло внушительного уровня — многих тысяч тонн в год.

Шествие диоксина по планете

После публикации работ К. Шульца можно было ожидать, что заводы по производству трихлорфенола будут закрыты либо будут разработаны новые технологические схемы получения этого продукта, не допускающие накопления в нём столь сильного яда. Однако этого не только не произошло, но и, вопреки здравому смыслу, дальнейшие публикации о физиологической активности и путях образования диоксина и тетрахлордибензофурана просто прекратились. Одновременно почти перестали поступать сообщения о случаях поражения людей трихлорфенолом и его производными, хотя именно в этот период, как стало известно позже, они были наиболее частыми. В то же время производство трихлорфенола и продуктов его переработки по старой технологической схеме 50-х годов в странах Запада, и особенно в США, существенно расширилось, сохранился высокий уровень потребления этой опасной продукции и непрерывно возрастал её экспорт.

Биоцидные и гербицидные препараты, получаемые из трихлорфенола.
Биоцидные и гербицидные препараты, получаемые из трихлорфенола.
Биоцидные, инсектицидные и гербицидные препараты на основе 2,4,5-трихлорфенола поступили во многие страны Американского континента, в некоторые cтраны Африки и Юго-Восточной Азии, в Австралию и Океанию. Вместе с ними в почвы и акватории, города и посёлки обширных районов мира непрерывно вносился диоксин. Особенно большие его количества поступали со сточными водами в окружающую среду районов, где размещались заводы, производящие трихлорфенол. Результаты этой деятельности не замедлили сказаться: в конце 60-х  — начале 70-х годов в США были зарегистрированы многочисленные случаи массового поражения домашней птицы и даже потомства диких животных.

Позже было показано, что гербициды типа 2,4,5-Т, поступавшие в 60-е годы на внутренний и внешний рынки США, содержали диоксин в концентрации от 1 до 100 частей на млн. (ррm), т.е. в количествах, которые превышают допустимые в десятки, сотни и даже тысячи раз. Если считать, что используемые в мирных целях продукты переработки трихлорфенола содержали всего лишь 10 ррm диоксина, то и в этом случае за десятилетие, прошедшее после установления причин токсичности этой продукции, в окружающую среду США вместе со многими тысячами тонн пестицидов внесены сотни килограммов этого яда. Близкое этому количество диоксина появилось и на территории стран, импортировавших эту продукцию из США.

«Операция Рэнч Хэнд» — преступление века

Особенно обширной оказалась военная программа США по использованию продуктов переработки трихлорфенола. К 60-м годам военное ведомство США завершило разработку широкого плана изучения гербицидов как потенциального оружия экологической войны, который предполагалось осуществить на территории Индокитая под кодовым названием „Операция Рэнч Хэнд“ [6]. Более того, к этому времени уже были отобраны гербицидные рецептуры, разработаны методы и средства их применения, проведены широкие испытания в условиях, моделирующих тропические зоны Индокитая. В период испытаний основное внимание военных специалистов уделялось гербицидным рецептурам, содержащим эфиры 2,4,5-Т.

6. Buckingham W. A. Operation Ranch Hand. Washington, 1982.

Когда обращаешься к материалам 60-х годов, особенно поражают масштабы проводившейся в США пропаганды этого вида оружия массового поражения. Для него было выбрано безобидное название „дефолианты“, иными словами, средства, вызывающие опадение листьев растений. На деле, однако, в армии США на вооружении были исключительно гербицидные рецептуры, предназначенные для полного уничтожения растений. В открытых наставлениях армии США „дефолиантам“ отводилась роль демаскировки партизан и подавления их продовольственной базы. В печати превозносилась „гуманность“ этого нового вида оружия. В заявлениях высокопоставленных представителей армии и даже администрации США гарантировалась полная безопасность его применения для окружающей среды, человека и животных. Что же было в действительности?

Летом 1961 г. в присутствии представителя Белого Дома ВВС США приступили к реализации „Операции Рэнч Хэнд“ на территории Южного Вьетнама, а через три года завершили её первый этап. Около 2 тыс. т гербицидов понадобилось для того, чтобы решить основные задачи первого этапа, связанные с выбором наиболее эффективных рецептур, способов, тактики и стратегии их применения. Осенью 1964 г. ВВС США приступили к систематическому массированному поражению окружающей среды Вьетнама, после чего научной общественности стало ясно, что армия США во Вьетнаме проводит крупномасштабные испытания новых видов оружия массового поражения — оружия экоцида и геноцида.

К чести прогрессивных американских учёных, они первыми подняли голос протеста против химической войны во Вьетнаме. Однако ни их выступления в печати, ни коллективные петиции в адрес администрации США не были приняты во внимание. После 1965 г. масштабы химических акций стали наращиваться, на леса и поля Вьетнама ежегодно выбрасывались десятки тысяч тонн гербицидов. По неполным официальным данным, в химической войне 1961-1972 гг. США применили около 96 тыс. т гербицидов, из них 57 тыс. т рецептур, содержащих диоксин. Засекреченными остались сведения об объёмах применения гербицидов в 1970-1972 гг. на территории Вьетнама и масштабы гербицидных обработок в Лаосе и Кампучии. Однако из баланса по производству и потреблению гербицидов следует, что обусловленный военными закупками США прирост производства 2,4,5-Т в 60-е годы достиг 50 тыс. т, а 2,4-Д — 80 тыс. т. Из этого количества было изготовлено более 100 тыс. т только гербицидных рецептур, содержащих диоксин.

Таблица 2

При оценке количества диоксина, внесённого в окружающую среду Вьетнама, необходимо учитывать, что его концентрация в технических эфирах 2,4,5-Т определяется технологией производства, которая в 50-е и 60-е годы была неизменной и приводила к высокому содержанию яда. Из подавляющего числа первоисточников следует, что концентрация диоксина в гербицидных рецептурах армии США достигала нескольких десятков ррm. С этим согласуются сведения о загрязненности эфиров 2,4,5-Т производства 60-х годов, приводимые в работе К. Раппе [7] (до 100 ррm) и в отчёте Национальной академии наук США [8] (до 50 ppm). Это подтверждают официальные данные ВВС США о содержании диоксина в пурпурной, розовой и зелёной рецептурах армии США (33-66 ppm). Американские учёные, изучающие свойства рецептуры „орандж эйджент“, использовали типичные образцы с содержанием 15-30 ppm диоксина.

7. Rappe С.- Ecol. Bull., 1977, N 28, p. 28.
8. National Academy of Science Comrnittee on the effects of herbicides in Vietnam. Washington, 1974.

Лишь официальные данные ВВС США, полученные А. Янгом для „орандж эйджент“, резко контрастируют с приведёнными выше сведениями: в них утверждается, что среднее содержание диоксина в этой наиболее широко применявшейся во Вьетнаме рецептуре близко к 2 ppm [9]. Однако, как следует из официальных данных министерства земледелия США [10], эфиры 2,4,5-Т такой степени чистоты в США далеко не всегда получали даже в начале 70-х годов, когда в технологическую схему была включена стадия очистки трихлорфенола. Лишь после внедрения схемы с двукратной очисткой трихлорфенола удалось получить продукцию с содержанием диоксина ниже 1 ppm.

9. А. Янг и другие представители официальных кругов США утверждают, что очистка трихлорфенола от диоксина в США включена в технологическую схему с середины 60-х годов. Однако из технической и патентной литературы следует, что усовершенствование производства трихлорфенола началось после 1970 г. Произведенные А. Янгом расчёты основаны на качестве эфиров 2,4,5-Т производства 1971-1973 гг.
10. Данные по: Gribble W.- Chemistry, 1974, v.47, p.15.

Всё это позволяет считать более правдоподобными данные о высоком содержании диоксина в гербицидах типа 2,4,5-Т, произведённых в 60-е годы. Таким образом, 57 тыс. т рецептур на основе 2,4,5-Т, применение которых во Вьетнаме официально признаётся в США, принесли на сравнительно небольшую территорию Индокитая более 500 кг диоксина. Велика опасность того, что для получения реальной картины это количество следует по крайней мере удвоить. Оценивая степень загрязнения окружающей среды диоксином, необходимо также учитывать возможность его вторичного образования после применения производных трихлорфенола. Сейчас показано однозначное термическое превращение в диоксин предиоксина, обычно присутствующего в технических препаратах на основе трихлорфенола. Высок выход диоксина при термолизе других нелетучих производных трихлорфенола, в том числе и 2,4,5-Т. Приведённые в литературе отрицательные результаты были связаны либо с использованием летучих предшественников диоксина, либо с наличием условий их эффективного удаления из сферы реакции.

Поскольку в различных объектах окружающей среды трихлорфенол и эфиры 2,4,5-Т быстро превращаются в нелетучие производные, различные материалы, консервированные биоцидами, а также остатки растений, поражённых гербицидами типа 2,4,5-Т, при сжигании заведомо являются источниками дополнительного количества диоксина. Особенно высокой надо считать вероятность вторичного образования диоксина в условиях химической войны, которая проводилась во Вьетнаме. Здесь за период военных действий было сожжено более 500 тыс. т напалма (в том числе и на обширных территориях поражённых лесов), взорвано более 13 млн т авиабомб, снарядов и мин. Поэтому в окружающую среду Вьетнама диоксин поступил в значительно больших количествах, чем его содержалось во многих десятках тысяч тонн гербицидов, примененных армией США.

Чтобы представить себе, с какими последствиями связано накопление диоксина в окружающей среде, мы более подробно познакомим читателя со свойствами этого опасного яда.

Что известно о свойствах диоксина

Строение, физические и химические свойства. Молекула диоксина плоская и отличается высокой симметрией. Распределение электронной плотности в ней таково, что максимум находится в зоне атомов кислорода и хлора, а минимум в центрах бензольных колец. Эти особенности строения и электронного состояния и обусловливают наблюдаемые экстремальные свойства молекулы диоксина.

Диоксин — кристаллическое вещество с высокой температурой плавления (305°С) и очень низкой летучестью, плохо растворяющееся в воде (2x10–8% при 25°С) и лучше — в органических растворителях. Он отличается высокой термической стабильностью: его разложение отмечается лишь при нагревании выше 750°С, а эффективно осуществляется при 1000°С.

Диоксин — химически инертное вещество. Кислотами и щелочами он не разлагается даже при кипячении. В характерные для ароматических соединений реакции хлорирования и сульфирования он вступает только в очень жёстких условиях и в присутствии катализаторов. Замещение атомов хлора молекулы диоксина на другие атомы или группы атомов осуществляется лишь в условиях свободнорадикальных реакций. Некоторые из этих превращений, например взаимодействие с натрий-нафталином и восстановительное дехлорирование при ультрафиолетовом облучении, используются для уничтожения небольших количеств диоксина. При окислении в безводных условиях диоксин легко отдаёт один электрон и превращается в стабильный катион-радикал, который, однако, легко восстанавливается водой в диоксин с выделением очень активного катион-радикала НО+. Характерной для диоксина является его способность к образованию прочных комплексов с многими природными и синтетическими полициклическими соединениями.

Токсичность диоксина при одноразовом введении
ВидЛД50, мг/кг*
Морская свинка0,001
Крыса0,050
Мышь0,112
Кошка0,115
Собака0,3
Куры0,5
Куриный эмбрион0,0005
Гуппи0,1 ppm**
Echerichia coli2 — 4 ppm**
Salmonella tiphimurium2 — 3 ppm**
* ЛД50 — обозначение, принятое в токсикологии для дозы,
вызывающей 50% летальных исходов.
** Летальная концентрация.
Токсические свойства. Диоксин — тотальный яд, поскольку даже в относительно малых дозах (концентрациях) он поражает практически все формы живой материи — от бактерий до теплокровных. Токсичность диоксина в случае простейших организмов обусловлена, по-видимому, нарушением функций металлоферментов, с которыми он образует прочные комплексы. Значительно сложнее происходит поражение диоксином высших организмов, особенно теплокровных.

В организме теплокровных диоксин первоначально попадает в жировые ткани, а затем перераспределяется, накапливаясь преимущественно в печени, затем в тимусе и других органах. Его разрушение в организме незначительно: он выводится в основном неизменным, в виде комплексов неустановленной пока природы. Период полувыведения колеблется от нескольких десятков дней (мышь) до года и более (приматы) и обычно возрастает при медленном поступлении в организм. С повышением удерживаемости в организме и избирательного накопления в печени чувствительность особей к диоксину возрастает.

При остром отравлении животных наблюдаются признаки общетоксического действия диоксина: потеря аппетита, физическая и половая слабость, хроническая усталость, депрессия и катастрофическая потеря веса. К летальному исходу он приводит через несколько дней и даже через несколько десятков дней, в зависимости от дозы яда и скорости его поступления в организм.

В нелетальных дозах диоксин вызывает тяжёлые специфические заболевания. У высокочувствительных особей первоначально появляется заболевание кожи — хлоракне (поражение сальных желез, сопровождающееся дерматитами и образованием долго незаживающих язв), причём у людей хлоракне может проявляться снова и снова даже через многие годы после излечения. Более сильное поражение диоксином приводит к нарушению обмена порфиринов — важных предшественников гемоглобина и простетических групп железосодержащих ферментов (цитохромов). Порфирия — так называется это заболевание — проявляется в повышенной фоточувствительности кожи: она становится хрупкой, покрывается многочисленными микропузырьками. При хроническом отравлении диоксином развиваются также различные заболевания, связанные с поражениями печени, иммунных систем и центральной нервной системы.

Все эти заболевания проявляются на фоне резкой активации диоксином (в десятки и сотни раз) важного железосодержащего фермента — цитохрома Р-448. Особенно сильно активируется этот фермент в плаценте и в плоде, в связи с чем диоксин даже в ничтожных количествах подавляет жизнеспособность, нарушает процессы формирования и развития нового организма, иными словами, оказывает эмбриотоксическое и тератогенное действие. В ничтожных концентрациях диоксин вызывает генетические изменения в клетках поражённых особей и повышает частоту возникновения опухолей, т.е. обладает мутагенным и канцерогенным действием.

Схема переноса диоксина по цепям питания
Схема переноса диоксина по цепям питания. Попадая в почву, диоксин поглощается растениями (особенно их подземной частью), почвенной фауной, через которую передаётся по цепи питания птицам и другим животным. Вынесенный из почв воздушными и водными потоками в акватории, диоксин через зоопланктон, рачков и рыб также попадает к птицам и млекопитающим. Иными словами, с растительной, мясной, молочной (особенно!) и рыбной продукцией, полученной с заражённой территории, диоксин так или иначе попадёт на стол к человеку. Высокая стабильность этого яда благоприятствует его многократной циркуляции по цепям питания.
Поведение в окружающей среде. В биосфере диоксин быстро поглощается растениями, сорбируется почвой и различными материалами, где практически не изменяется под влиянием физических, химических и биологических факторов среды. Благодаря способности к образованию комплексов, он прочно связывается с органическими веществами почвы, купируется в остатках погибших почвенных микроорганизмов и омертвевших частях растений. Период полураспада диоксина в природе превышает 10 лет. Таким образом, различные объекты окружающей среды являются надёжными хранилищами этого яда.

Дальнейшее поведение диоксина в окружающей среде определяется свойствами объектов, с которыми он связывается. Его вертикальная и горизонтальная миграции в почвах возможны только для ряда тропических районов, где в почвах преобладают водорастворимые органические вещества. В почвах остальных типов, содержащих нерастворимые в воде органические вещества, он прочно связывается в верхних слоях и постепенно накапливается в остатках погибших организмов.

Из почв диоксин выводится преимущественно механическим путем. Отличающиеся низкой плотностью комплексы диоксина с органическими веществами, а также содержащие его остатки погибших организмов выдуваются с поверхности почвы ветром, вымываются дождевыми потоками и в итоге устремляются в низменности и акватории, создавая новые очаги заражения (места скопления дождевой воды, озёра, донные отложения рек, каналов, прибрежной зоны морей и океанов).

Проведённые недавно анализы почв некоторых районов Южного Вьетнама указывают на сравнительно небольшое содержание диоксина в поверхностных слоях и на его появление в концентрации до 30 частей на триллион (30 ppt) в глубинных частях почвы. Это свидетельствует о том, что физический и механический перенос в условиях тропиков способствует эффективному рассеянию яда в природе. Однако это не единственный путь миграции диоксина в биосфере. Существует ещё перенос этого яда по цепям питания, который способствует его постоянному накоплению в районах максимального потребления заражённых им продуктов питания, т.е. концентрированию в густонаселённых районах.

По мнению вьетнамского ученого и хирурга профессора Тон Тхат Тунга, эффективный биоперенос диоксина в природе способствует постоянному его накоплению теплокровными, причём степень накопления диоксина теплокровными возрастает с увеличением содержания яда в окружающей среде. Это заключение явилось результатом многолетнего изучения последствий прошедшей химичекой войны для обширных контингентов десятимиллионного населения Вьетнама, проживавших и (или) проживающих в районах применения так называемых „безвредных для человека и окружающей среды“ гербицидов военного назначения. Чтобы убедиться в справедливости выводов вьетнамских учёных, обратимся к фактам.

Диоксин и его следы во Вьетнаме

Ещё в 1970 г. на международной конференции в Орсэ (Франция) вьетнамские учёные сообщили об отмеченной ими связи между поражениями людей гербицидными рецептурами армии США и хромосомными аберрациями, заболеваемостью первичным раком печени, количеством врождённых уродств и аномалий беременностей. [11].

11. Вьетнам: химическая война. Ханой, 1972.

Они объяснили это мутагенным, канцерогенным и тератогенным действием гербицидов, применённых в химической войне во Вьетнаме, на людей. К этому времени в опытах на животных уже было продемонстрировано тератогенное действие 2,4,5-Т и установлено, что его причиной является присутствующий в гербициде диоксин. Несмотря на это, сообщение вьетнамских учёных было встречено с недоверием. Более того, именно после этих событий официальные круги США начали интенсивно формировать версию о безвредности диоксина.

Прошли годы. Усилиями прогрессивных учёных развеяны домыслы о безвредности диоксина. В опытах на животных убедительно показаны все коварные особенности его действия на теплокровных. Однако эти данные, по мнению официальных кругов США, не могут быть распространены на человека без прямых доказательств.

Авторам этой статьи неоднократно приходилось бывать во Вьетнаме, видеть собственными глазами некоторые результаты прошедшей там химической войны, обсуждать вместе с учёными Вьетнама её отдалённые последствия, беседовать с очевидцами, оставшимися в живых, и новыми жертвами войны. Всё увиденное и услышанное поражает воображение. Особенно тяжёлый след оставляет горе многих вьетнамских женщин, потерявших величайшую радость жизни — возможность иметь здоровых и уверенных в счастливом будущем детей. Поэтому невольно испытываешь смешанное чувство недоумения, гнева и стыда за беззастенчивый, грубый обман общественного мнения, когда читаешь беззаботные рассуждения некоторых „учёных“ Запада, стремящихся любыми путями обосновать отсутствие эмбриотоксических, тератогенных и мутагенных эффектов диоксина на человека. Некоторые из таких „учёных“ пытались отстаивать эту версию и на состоявшемся в январе 1983 г. международном симпозиуме в г. Хошимине, посвящённом отдалённым последствиям химической войны США во Вьетнаме.

На симпозиуме собралось более 120 человек из 21 страны мира. Их вниманию было представлено около 70 докладов, в том числе более 30 сообщений вьетнамских учёных, с фактическими данными о последствиях длительного и массированного применения гербицидов на население и природу поражённых районов. После всестороннего обсуждения представленных материалов участники симпозиума пришли к единодушному мнению (и это нашло отражение в заключительном документе симпозиума [12]), что и через 10 лет после окончания химической войны её отрицательное воздействие на человека и природу всё ещё продолжается, что даже в настоящее время ещё трудно оценить все аспекты, масштабы и продолжительность её отдельных последствий.

12. Herbicides and deloliants in war: the long-term effects on man and nature. Hanoi, 1983.

В заключительных документах симпозиума отмечено, что флора, фауна и почвы многих районов Южного Вьетнама претерпели сильные изменения. Большую часть тропических лесов война превратила в саванны, территории которых в ряде районов и сейчас расширяются; многие прибрежные мангровые леса полностью уничтожены, и их спонтанное восстановление потребует многих сотен лет; потеряно плодородие на больших массивах пахотных земель.

В заключительном документе симпозиума впервые констатировано, что диоксин оказывает мутагенное, канцерогенное и тератогенное действие на животных и отмечены вьетнамские данные, показавшие наличие подобных эффектов у поражённых во время войны людей. Подчёркнуто, что аномалии, приобретённые поражёнными людьми, могут передаваться по наследству, что последствия поражения связаны с хромосомными аберрациями и вызывают врождённые аномалии у детей, пузырный занос и хорионэпителиому (цистообразную и злокачественную дегенерацию хориона) у женщин, а приобретённые аномалии могут проявиться даже через многие годы после поражения.
Частота встречаемости различных аномалий беременности в различных районах Вьетнама, %
Тип аномалийРайон наблюдений
Поражённый
р-н провинции Бенче
(Танфонг)
Город ХошиминСеверный Вьетнам
(Майван)
Из заражённых
районов
Из незаражённых
районов
Врождённые аномалии6,4916,332,580,45
Внутриутробная смерть4,721,020,181,91
Обыкновенный выкидыш47,0350,0021,655,77
Пузырный занос10,6511,222,300,09

Эти формулировки, включённые в документ после жарких дебатов, дают почти полное представление о действии диоксина на человека; при этом в документе сказано, что „наиболее сильные последствия на население оказало применение во время войны рецептуры „орандж эйджент“, содержащей высокотоксичный, стабильный в окружающей среде диоксин“.

Основой для приведённых выше положений заключительного документа симпозиума стали данные, полученные учёными Вьетнама. Согласно этим данным, у поражённых гербицидами людей количественные и качественные изменения хромосом встречаются намного чаще (иногда в десятки раз), чем у людей контрольной группы (при этом наблюдаемые аномалии такие же, как у жителей Хиросимы, пострадавших во время атомной бомбардировки). Частота заболеваемости поражённых людей первичным раком печени во время войны возросла в три раза и всё ещё остаётся высокой. В семьях, где муж и жена либо только жена или только муж подвергались воздействию гербицидов или проживали на поражённой ими территории, резко повысилось количество врождённых аномалий у детей. Среди врождённых уродств отмечали самые разнообразные формы: от недоразвития головы до осложнённых такими дефектами аномалий, как отсутствие носа, глаз, ушей, заячья губа, укороченные конечности; от простой до осложнённой водянки головного мозга; от синдактилизма (сращивание пальцев на конечностях) до отсутствия некоторых частей тела, например предплечья, верхней челюсти, брюшной стенки. Многие из этих аномалий ранее не наблюдались ни в одном районе земного шара. У поражённых гербицидами женщин особенно часты аномалии беременности, случаи пузырного заноса и хорионэпителиомы. Причем, если у нового поколения вьетнамских женщин число аномалий беременности медленно снижается, то случаи пузырного заноса и хорионэпителиомы всё ещё прогрессируют.

Как показали вьетнамские учёные, отмеченные последствия химической войны во всех случаях связаны с применением „орандж эйджент“ и были всегда более сильными и часто встречаемыми среди контингентов населения, проживающих в сильно поражённых районах. Эти данные однозначно указывают на причины поражения и являются серьёзным предупреждением человечеству о тех ужасах, к которым ведёт накопление диоксина в природе.

Не допустить накопления диоксина в биосфере!

Рассмотренные выше характеристики диоксина как ксенобиотика во многом напоминают ДДТ, и поэтому естественно считать, что диоксин, как и ДДТ, способен переноситься воздушными, водными течениями и мигрирующими организмами за тысячи километров от мест введения в биосферу. Однако диоксин несравненно более токсичен, стабилен и активнее принимает участие в круговороте по цепям питания, чем ДДТ, в связи с чем он неизмеримо более опасен для человека и окружающей среды не только в местах его поступления в природу, но и за многие сотни и тысячи километров от них. Поэтому проблемы диоксина затрагивают не только региональные и национальные интересы. Это в первую очередь важнейшие вопросы международной проблемы защиты человека и окружающей среды, которыми должны заниматься соответствующие всемирные организации.

Защита от диоксина — одна из самых сложных проблем, которую когда-либо приходилось решать. Крайне низкие опасные концентрации этого яда невозможно установить простыми методами массового анализа. Диоксин невозможно уничтожить в биосфере доступными для массового применения методами и средствами. Надёжная защита человека от диоксина — это сложный комплекс мероприятий по профилактике и терапии поражений, который должен включать:

    1) разработку для контингентов поражённого населения комплекса безвредных в условиях резкой активации монооксигеназ медицинских препаратов, систем веществ производственного и бытового назначения;
    2) разработку средств, препятствующих всасыванию яда в пищевом тракте и способствующих его выведению из организма;
    3) разработку терапевтических препаратов для восстановления нарушенного обмена.
Сложность этих задач очевидна, и единственный реальный путь решения проблемы — не допустить накопления диоксина в природе.

Как показал опыт, основным источником поступления диоксина и родственных соединений в природу в настоящее время является химическая продукция, производство которой сопровождается побочным образованием этого яда. Причём надо иметь в виду, что в окружающей среде при определённых условиях и основные вещества, получаемые в этих химических процессах, являются эффективными предшественниками ядов. Поэтому кардинальное решение проблемы диоксина и родственных ему соединений может быть достигнуто лишь свёртыванием всех химических производств, связанных с образованием этих ксенобиотиков. Преднамеренное введение продукции, загрязнённой диоксином, недопустимо, даже если речь идёт о массированном применении химических средств в мирных целях, что, повидимому, было осуществлено фирмой „Дау кемикал“ в 1981-1983 гг. в Бразилии при уничтожении и консервации растительности в долине р. Токантинс.

В нашей стране своевременно, уже при первых попытках организации, запрещено производство, импорт и применение препаратов, способствующих введению диоксина в природу, и поэтому острой проблемы диоксина на территории Советского Союза не существует. Одако это не означает, что учёные нашей страны должны стоять в стороне от кардинальных вопросов этой проблемы. Сейчас известно, что диоксин образуется при пиролизе полихлорвинила, при сжигании мусора в печах, при пиролитическом разложении любых органических веществ в присутствии источников хлора. Финскими исследователями показано, что диоксин появляется в местах лесных пожаров. Всё это второстепенные источники диоксина в природе. Однако их множество настораживает и требует проведения тотального контроля за всеми высокотемпературными превращениями, использующими соединения углерода и хлора. Не должны быть чуждыми советским учёным и медицинские аспекты проблемы диоксина — к этому обязывает нас интернациональный долг в отношении братского вьетнамского народа. Наконец, диоксин это лишь один из потенциальных ксенобиотиков, являющихся сверхактивными индукторами моноoксигеназ. Не допустить попадания этих ксенобиотиков в природу — одна из важнейших задач по сохранению здоровья населения и чистоты окружающего нас мира.

VIVOS VOCO


AthleticMed магазин спортивной медицины по низким ценам!
2007 Copyright © GenDNA.ru Мобильная Версия v.2015 | PeterLife и компания
Пользовательское соглашение использование материалов сайта разрешено с активной ссылкой на сайт. Партнёрская программа.
Яндекс.Метрика Яндекс цитирования